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Abstract Under non-phosphorylating conditions a high
proton transmembrane gradient inhibits the rate of oxygen
consumption mediated by the mitochondrial respiratory chain
(state IV). Slow electron transit leads to production of reactive
oxygen species (ROS) capable of participating in deleterious
side reactions. In order to avoid overproducing ROS,
mitochondria maintain a high rate of O2 consumption by
activating different exquisitely controlled uncoupling
pathways. Different yeast species possess one or more
uncoupling systems that work through one of two
possible mechanisms: i) Proton sinks and ii) Non-
pumping redox enzymes. Proton sinks are exemplified
by mitochondrial unspecific channels (MUC) and by
uncoupling proteins (UCP). Saccharomyces. cerevisiae
and Debaryomyces hansenii express highly regulated
MUCs. Also, a UCP was described in Yarrowia lipolytica
which promotes uncoupled O2 consumption. Non-pumping
alternative oxido-reductases may substitute for a pump, as in
S. cerevisiae or may coexist with a complete set of pumps as
in the branched respiratory chains from Y. lipolytica or D.
hansenii. In addition, pumps may suffer intrinsic uncoupling
(slipping). Promising models for study are unicellular para-
sites which can turn off their aerobic metabolism completely.
The variety of energy dissipating systems in eukaryote
species is probably designed to control ROS production in
the different environments where each species lives.
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Introduction

In mitochondria, oxidative phosphorylation results from the
coupling between the redox-primary proton pumps in the
respiratory chain and the F1F0-ATP synthase. The redox H+

pumps create a pH gradient (ΔpH) used by the F1F0-ATP
synthase to phosphorylate ADP. The efficiency of this
system varies when electrons enter or exit the respiratory
chain at different enzymes or when the H+ gradient is used
by secondary pumps for the active transport of proteins,
ions and metabolites (Nicholls and Ferguson 2002) (Fig. 1).

Three of the four respiratory complexes in an
orthodox respiratory chain are proton pumps. These
enzymes oxidize substrates, transferring electron(s) to
the next acceptor in the chain and expelling H+(s) to the
intermembrane space. Recycling of the electron within a
given pump often results in H+/e− stoichiometries higher
than 1 (Brandt 2006; Hosler et al. 2006; Trumpower
1990). This high efficiency comes at a price, as redox
reactions involve several steps where incomplete reduc-
tions transiently convert coenzymes into reactive free
radicals (Drose and Brandt 2008; Kushnareva et al. 2002).
Therefore, when the mitochondrial ADP concentration
drops, the rate of electron flux through the respiratory
chain decreases (State IV respiration) and mitochondria
become an important source of superoxide and other
reactive oxygen species (ROS) (Chen et al. 2003). ROS
production has diverse functions, such as signaling and
apoptosis (Forman et al. 2010; Perrone et al. 2008).
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However, overproduction of ROS may lead to ageing and
disease (Drakulic et al. 2005; Wilhelm et al. 2006).

The labile nature of the superoxide radical has made
difficult the identification of all its mitochondrial sources.
Still, it is known that the ubiquinone and flavin oxido-
reduction centers produce ROS (Chen et al. 2003; Starkov et
al. 2004; Zundorf et al. 2009). During the redox ubiquinone/
ubiquinol reaction, oxidized ubiquinone is partially reduced
by one electron in the Qo site of the bc1 complex becoming a
potential superoxide source (Drose and Brandt 2008). At a
high mitochondrial transmembrane potential, semiquinone
accumulates participating in a side reactions that produce
ROS (Koshkin et al. 2003; Rottenberg et al. 2009).

In cells and mitochondria there are different enzymes that
eliminate ROS, such as Mn2+ SOD-dismutases, catalase and
glutathione peroxidases. However, ROS overproduction may
overwhelm these systems and thus different energy-
dissipating uncoupling mechanisms may be activated to
prevent such overproduction. These “physiological uncou-
pling” mechanisms would prevent ROS over-accumulation by
inducing increased electron flux (Czarna and Jarmuszkiewicz
2005; Maxwell et al. 1999).

Among plants, yeast and fungi, there are different
strategies aimed at preventing ROS overproduction
(Kowaltowski et al. 1998; Magnani et al. 2008). In different
yeast species it has been observed that oxidative phosphor-
ylation can be uncoupled by different mechanisms (Fig. 2).
Oxidative phosphorylation may be uncoupled through
dissipation of the H+ gradient through proton sinks, also
termed extrinsic uncouplers (Kadenbach 2003): these may
be channels or transporters and are represented by two well
studied systems. These are the yeast mitochondrial unspe-
cific channel (MUC) (Manon et al. 1998), which in
mammals is known as the permeability transition pore
(PTP) (Haworth and Hunter 1979), and the uncoupling
proteins (UCP) (Nicholls and Rial 1999) that specifically
dissipate H+ gradients (Fig. 3). The second respiratory
chain uncoupling mechanism, also termed intrinsic uncou-
pling (Kadenbach 2003) is the catalysis of redox reactions
without pumping protons. Non-pumping redox enzymes are
widely represented in the branched mitochondrial respira-
tory chains observed in plants and unicellular organisms
(Rasmusson et al. 2004; Umbach and Siedow 2000;
Wagner and Moore 1997). Among these enzymes, there
are type-II NADH dehydrogenases (NDH2) and alternative
oxidases (AOX). In addition, the variations in H+/e−

stoichiometry (slipping) are another source of uncoupling.

Proton dissipating pathways

The mitochondrial unselective channel

Mitochondrial unspecific channels (MUCs) have been
detected in yeast such as Saccharomyces cerevisiae (ScMUC)
(Guerin et al. 1994; Prieto et al. 1992) and Debaryomyces
hansenii (DhMUC) (Cabrera-Orefice et al. 2010). MUC
opening results in a mitochondrial permeability transition
(PT) similar to that described in mammals, i.e. a large

Fig. 1 Oxidative phosphorylation efficiency variations due to
different systems that use protons. The proton gradient generated by
the respiratory chain may be used by (a) the F1F0-ATP synthase (F0F1)
for ADP phosphorylation (b) the transport of ions or metabolites
across the inner mitochondrial membrane (IMM) either as (c)
antiporter or (c’) symporter. (d) ion uniport. RC, respiratory chain

Fig. 2 Physiological uncou-
pling systems in yeast mito-
chondria. The rate of oxygen
consumption may be accelerated
independently of the synthesis
of ATP by either depleting the
transmembrane pH gradient or
by reducing oxygen without
contributing to the proton
gradient. These mechanisms
are present in different
yeast species
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increase in conductivity that depletes electrochemical gra-
dients (Azzolin et al. 2010).

The ScMUC has been thoroughly characterized. ScMUC
opens in response to ATP, while it is closed by Pi or ADP
(Prieto et al. 1995). This suggests that ScMUC is controlled
by the phosphorylation potential (Wallace et al. 1994). In
addition, both the ScMUC (Perez-Vazquez et al. 2003) and
the DhMUC (Cabrera-Orefice et al. 2010) are closed by
Mg2+ and by Ca2+. Furthermore, the ScMUC seems to be
controlled cooperatively by Ca2+, Mg2+ and Pi [to be
published]. In S. cerevisiae, a rise in cytoplasmic [Ca2+]
precedes processes such as division, mating (Nakajima-
Shimada et al. 2000; Ohya et al. 1991); or even a death
program resembling apoptosis (Nakajima-Shimada et al.
2000; Ohya et al. 1991; Pozniakovsky et al. 2005). That is,
a rise in [Ca2+]cyt indicates that the cell is about to spend a
large amount of energy (Anraku et al. 1991; Manon and
Guerin 1998). Both the ScMUC and the DhMUC close in
response to low [ATP] or high [Pi] while in contrast, when
there is a surplus of ATP and no signals this indicates an
oncoming need for energy, yeast MUCs open, dissipating
the transmembrane potential and thus allowing the rate of
oxygen consumption to increase (Prieto et al. 1992) and the
production of ROS to decrease (Korshunov et al. 1997).

In S. cerevisiae, Ca2+ closes MUC, probably through its
interaction with the voltage-dependent anionic channel
(VDAC) (Gutierrez-Aguilar et al. 2007). The Ca2+-VDAC
interaction has also been proposed for vertebrates (Gincel et
al. 2001). In both cases, the possibility that VDAC is a
regulatory pore component has been suggested (Baines et
al. 2007; Gutierrez-Aguilar et al. 2007). In regard to the
possible component of MUC in the IMM, in S. cerevisiae it
has long been evident that Pi is a strong MUC regulator
(Azzolin et al. 2010; Cortes et al. 2000; Jung et al. 1997;
Manon and Guerin 1997; Prieto et al. 1992; Velours et al.
1977). From this, it should not be surprising that recent
evidence suggests that the mitochondrial phosphate carrier
(PiC) is a constituent of the ScMUC: in the absence of PiC,

ScMUC changes its solute size exclusion size and Pi
sensitivity (Gutierrez-Aguilar et al. 2010). In mammals,

PiC has also been proposed to be part of this channel
(Leung et al. 2008).

Different modulators of MUCs have been reported
depending on the species, strain or even tissue under study
(Berman et al. 2000; Fortes et al. 2001; Friberg et al. 1999;
Manon et al. 1998), suggesting that MUCs have evolved in
response to selective pressure, e.g. in D. hansenii, the MUC
is closed by monovalent cations (Cabrera-Orefice et al.
2010). This closure probably results in higher production of
ATP, as it correlates with increased growth rate and mass
yield (Gonzalez-Hernandez et al. 2004) and probably
constitutes an adaptation to the high Na+ contents of sea
water (Gustafsson and Norkrans 1976).

Adding to the ongoing debate on the physiological role
of MUCs, it is suggested that their role as physiological
uncouplers should be considered; i.e. MUCs probably are
highly regulated energy dissipative systems that decrease
mitochondrial gradients when the demand for energy is low.

PT does not seem to be universal. Yarrowia lypolytica
and Endomyces magnusii undergo PT only upon forced
conditions which include incubation with the Ca2+ iono-
phore ETH129 (Kovaleva et al. 2009; Yamada et al. 2009).
If MUC- mediated uncoupling is important to inhibit ROS
production, and Y. lipolytica and E. magnusii seem to lack
such a structure, then these yeast species should possess
alternative uncoupling systems. Indeed, in Y. lipolytica
mitochondria there are two such systems that might
function as uncouplers: an uncoupling protein (Luevano-
Martinez et al. 2010) and a branched respiratory chain
(Guerrero-Castillo et al. 2009; Kerscher et al. 2002).

Uncoupling proteins

Uncoupling protein (UCP)-like activities have been
detected in mitochondria from unicellular organisms, higher
eukaryotes and plants (Jarmuszkiewicz et al. 2010). The
physiological role of UCPs in unicellular organisms is still
debated: the small size of unicellular eukaryotes makes a
thermogenic role unlikely, as it is impossible to form a
temperature gradient between the cell and the environment
although, in Acanthamoeba castellanii UCP expression
does increase in cells growing at 4 °C (Jarmuszkiewicz et
al. 2004). Here, it is proposed that unicellular UCPs are
capable of decreasing the mitochondrial ΔΨ with the aim
of decreasing production of ROS. Also, in unicellular
organisms resistance to exogenous ROS is enhanced by
UCP activity (Kowaltowski et al. 1998; Ricquier 2005),
probably because UCP decreases endogenous ROS
production (Krauss et al. 2005) and thus detoxifying
enzymes are free to deal with the exogenous species: e.g.
strains of Candida albicans devoid of UCP are less
invasive that the wild type (Cavalheiro et al. 2004; Cheng
et al. 2007).

Fig. 3 Proton Sinks. Two proton sink systems are exemplified. Once
the (a) Respiratory chain establishes a proton gradient, protons may be
returned to the matrix through (b) unspecific channels or through (c)
uncoupling proteins that are specific protonophores
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In addition to the available functional evidence,
recently a protein exhibiting UCP-like activity was
identified in Y. lipolytica (Luevano-Martinez et al.
2010). The UCP activity was regulated similarly to the
UCP1 from brown adipose tissue. After an extensive
phylogenetic search for a UCP ortholog in this yeast, it
was demonstrated that the mitochondrial oxaloacetate
carrier (OAC) from Y. lipolytica is a bona fide UCP. The
Y. lipolytica OAC displayed both, a sulfate/oxaloacetate
transport and a UCP behavior. It is noteworthy that in the
unicellular organisms where UCP activity has been
reported, the green algae Chlamydomonas reinhardtii,
the amoeba Dictyostelium discoideum (DictyBase) and
the yeast Candida albicans (Cavalheiro et al. 2004;
Jarmuszkiewicz et al. 2002) the only UCP-like proteins
seem to be the mitochondrial oxaloacetate carriers (results
not published). In regard to whether a UCP might prevent
ROS overproduction, in Y. lipolytica, it has been demon-
strated that this protein is over-expressed in the stationary
phase, where a degree of uncoupling would be needed to
maintain a high rate of oxygen consumption in the
absence of ATP synthesis (Luevano-Martinez et al. 2010).

Redox enzymes that do not pump protons

Branched mitochondrial respiratory chains

Redox enzymes lacking pumping activity are constituted by
a single protein subunit. These enzymes probably appeared
early in the reducing world, before the appearance of
oxidative phosphorylation, fulfilling the need to detoxify
oxygen from the vicinity of enzymes and membranes.
Some prokaryotes still use oxidoreductase-mediated detox-
ification of oxygen to protect their fragile nitrogen reducing
enzymes (Flores-Encarnacion et al. 1999).

Alternative redox enzymes do not contribute to the
proton gradient. Branched mitochondrial respiratory
chains may contain a number of different enzymes that
donate electrons to the quinone pool including complex I
(the only proton pump), succinate dehydrogenase, glyc-
erol phosphate dehydrogenase, dihydroorotate dehydro-
genase and internal or external type II NADH
dehydrogenases. Then the electrons in reduced ubiquinol
follow two possible pathways reaching either the cyto-
chrome pathway (complexes III and IV), or the alterna-
tive oxidase (AOX). In these respiratory chains, different
electron pathways may be envisioned that bypass energy-
conserving respiratory complexes I, III and/or IV, i.e.
branched chains seem to be able to reduce oxygen while
using 0, 1, 2 or 3 proton pumps (Fig. 4).

In mitochondria, the most widely distributed mono-
subunit redox enzymes are type II NADH dehydrogenases

(NDH2) and alternative oxidases (AOX). NDH2s may be
located on either surface of the IMM. External NDH2s
(NDH2e) oxidize cytosolic NADH, while internal NDH2s
(NDH2i) oxidize NADH from the matrix in a rotenone-
insensitive reaction. The structure (Fisher et al. 2007; Fisher
et al. 2009; Gonzalez-Meler et al. 1999; Kerscher 2000;
Melo et al. 2004; Schmid and Gerloff 2004) and kinetics
(Fisher et al. 2009; Velazquez and Pardo 2001) of NDH2s
from different organisms have been reported. AOX is a
single subunit enzyme (Albury et al. 2002; Andersson and
Nordlund 1999; Berthold et al. 2000; Moore and Siedow
1991). AOX activity is regulated by nucleotides, by
dimerization and/or by α-ketoacids (Hoefnagel et al.
1995; Millar et al. 1993; Millenaar et al. 1998). Some
yeast species contain two AOX isoforms, one being
constitutively expressed and a second one induced by stress
(Siedow and Umbach 2000). It is noteworthy that AOX is
present only in fungi that express complex I, possibly
because in a respiratory chain without Complex I, any
electron reaching AOX would be totally unproductive
(Joseph-Horne et al. 2001).

In mitochondria with alternative components, the path-
way that electrons follow has to be strictly controlled. A
direct reaction between NDH2, ubiquinone and AOX
would result in a non-productive, uncoupled pathway, i.e.
no protons would be pumped. Furthermore, at the external
face of the inner membrane, NDH2 receives the hydride
from NADH and takes one H+, transferring both hydrogen
atoms to ubiquinone. Then ubiquinone is regenerated by
AOX which in turn transfers its hydrogen atoms to oxygen
producing water. This sequence of reactions results in the
dissipation of a H+, i.e. it has a H+/e− pumping stoichiom-
etry of −0.5. Therefore, when energy is required, alternative
redox enzymes need to be isolated from each other,
probably by binding to the proton-pumping complexes. In
contrast, when phosphorylation is not active, as in the
stationary phase, the non-producing electron transfer
between NDH2 and AOX would be useful to maintain a
high rate of oxygen consumption at a high transmembrane
potential, preventing semiquinone accumulation and decreasing
ROS formation (Joseph-Horne et al. 2001).

Proton/electron stoichiometry variations. Slipping

Non-branched respiratory chains seem to use other
mechanisms to regulate the efficiency of oxidative
phosphorylation (van Dam et al. 1990). Uncoupling
may result from increased proton conductance at the lipid
bilayer (Luvisetto and Azzone 1989; Luvisetto et al.
1991). A second mechanism would be the decrease in
the efficiency of a respiratory pump (slipping) (Pietrobon
et al. 1981; Pietrobon et al. 1983). Intrinsic uncoupling or
slipping is defined as a decrease in the efficiency of a
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proton pump (decrease of the H+/e or H+/ATP stoichiometry)
resulting in a diminished P/O ratio (Kadenbach 2003).

Slipping has been reported in cytochrome c oxidase
(Azzone et al. 1985; Frank and Kadenbach 1996). The
F1F0-synthase can also undergo slipping, hydrolyzing ATP
without pumping protons (Feniouk et al. 2005). In
addition, protons can reenter the matrix through the pumps
without moving electrons backwards or making ATP
(Pietrobon et al. 1983).

Slipping accelerates the rate of oxygen consumption as
more electrons are needed to maintain a high ΔpH.
Normally in the proton pump the chemical reaction and
the transport of protons are tightly coupled, while during
slipping both processes become independent (Mourier et al.
2010). Upon slipping, the rate of electron flux increases
while the proton motive force remains constant and energy
is dissipated as heat (Kadenbach 2003).

In S. cerevisiae mitochondria, a remarkable change in
the stoichiometry of proton pumping has been described.
Feeding the respiratory chain with substrates for different
quinone reductases leads to an increase in the rate of

oxygen consumption without increasing the rate of ATP
phosphorylation (Mourier et al. 2010). This phenomenon
has been termed active leak and is probably due to
slipping of an oxidative phosphorylation pump, although
an increase in the proton conductance of the bilayer has
not been ruled out.

Interactions between the cytoplasm and mitochondria
regulate the efficiency of oxidative phosphorylation

At any given moment the cell´s energy needs determine
which metabolic pathways are activated or inhibited (Devin
and Rigoulet 2007). The catabolism/anabolism activity
ratio is determined by metabolic fluxes (Cascante et al.
1994; Moreno-Sanchez et al. 2010; Ovadi and Saks 2004;
Srere 1987). Upon oxygenation, the rate of glycolysis
decreases. This may be explained by the allosteric
regulation of glycolytic enzymes by ATP and fructose
2,6-bisphosphate and by the competition for ADP and for
reducing equivalents observed between glycolysis and

Fig. 4 In a branched respiratory chain the number of proton pumps
participating in electron transfer may vary from three to zero. In branched
respiratory chains electrons may follow different routes to reach oxygen.
Thus the number of proton pumps involved may change: a complexes I,
III and IV: three proton pumps are involved. b from succinate
dehydrogenase through the cytochrome pathway, two proton pumps. c
from NDH2e through complexes III-IV; two proton pumps, although
H+/e− is 2.5 instead of 3 as in (b). d from complex I though AOX; one
pump. e from succinate dehydrogenase through AOX; No proton pumps

participate. f NDH2e through AOX; zero proton pumps participate and
in addition, the combined activity of NDH2e with AOX would consume
a H+ from the intermembrane space, yielding a negative stoichiometry
of −0.5 H+/e−. Numbers I, II, III2 and IV represent each of the four
respiratory complexes; NDH2e, external NADH dehydrogenase; AOX,
alternative oxidase; IMM, inner mitochondrial membrane. Protons in
red are used for ubiquinone reduction in the intermembrane side of the
IMM, i.e. they do not contribute (c) or contribute negatively to the H+/
e− stoichiometry (f)
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oxidative phosphorylation (Beauvoit et al. 1993; Gosalvez
et al. 1974).

In Saccharomyces cerevisiae, glycolysis is the main
source of ATP; however, in the presence of non-
fermentable substrates oxidative phosphorylation becomes
the main energy source. During fermentation the genes that
encode for oxidative metabolism enzymes stop their
expression (Takeda 1981), e.g. glucose addition inhibits
the expression of cytochrome c (Thevelein 1994; Zitomer
and Nichols 1978), while glycolytic intermediates are
accumulated to induce the expression of glycolytic
enzymes (Boles et al. 1993).

In S. cerevisiae the addition of glucose induces the
transition to fermentative metabolism, where glycolysis
is increased and oxidative phosphorylation is decreased
(den Hollander et al. 1986). This is the Crabtree effect.
There are both Crabtree-positive and negative yeast
species. Recent sudies indicate that fructose1,6-bisphos-
phate inhibits oxygen consumption through an interaction
with complexes III and IV. In contrast, physiological
concentrations of glucose 6-phosphate and fructose 6-
phosphate stimulate the respiratory flux, possibly inducing
slipping (Diaz-Ruiz et al. 2008).

Unicellular organisms other than yeast

Protists make up the bulk of the eukaryotes, while
vertebrates and fungi represent only a small fraction.
Protists present a wide variety of physiological properties.
There are very few bioenergetics studies on these organ-
isms. Giardia lamblia (Hashimoto et al. 1994) and
Entamoeba histolytica (Tovar et al. 1999) have lost their
mitochondria. Other protists, such as some Trichomonadi-
dae and ciliates, have organelles called hydrogenosomes,
which are related to mitochondria (de Souza et al. 2009;
Mather and Vaidya 2008).

Unicellular parasites have evolved to adapt their metab-
olism for survival within the host. Depending on the
environment and stage in their life cycle, Plasmodium,
Trypanosoma and Leishmania can make a complete switch
from a glycolytic to an aerobic metabolism and back, such
that in Plasmodium falciparum the activities of complex III,
IV and dihydroorotate dehydrogenase, are 10 times higher
in the sexual than in the asexual stage (Monzote and Gille
2010). Likewise, mitochondria have adapted to the meta-
bolic conditions found within the host, e.g. in the mosquito,
Plasmodium gametocytes are aerobic and mitochondria are
typical. In contrast, in the vertebrate host, sporozoites and
merozoites are adapted to microaerophilia and contain few,
underdeveloped mitochondria (Segura and Blair 2003).

Throughout the trypanosomatid life cycle, mitochondrial
activity varies widely (Schneider 2001). In the bloodstream,

these protozoans are anaerobic while in the gut of the insect
they perform oxidative phosphorylation. In Toxoplasma
most energy is obtained from glycolysis, although the
mitochondrial DNA sequence of these parasites shows
significant differences from the mammalian host, suggest-
ing possible drug targets (Monzote and Gille 2010).
Remarkably, the mitochondrial DNAs from trypanosoma-
tids and Apicomplexa lack genes for transfer RNA (Mather
and Vaidya 2008).

Concluding remarks

Aerobic metabolism is at the same time highly efficient and
very dangerous. The reactive oxygen species produced by
the respiratory chain can react with, and damage different
components of the cell. Diverse mechanisms have evolved
to prevent the deleterious effect of ROS. There are many
detoxifying enzymes such as glutathione reductase, super-
oxide dismutase or catalase. In addition, upriver from these
reactions, there are diverse mitochondrial systems designed
to prevent ROS overproduction. These systems promote
physiological uncoupling to ensure that the redox enzymes
in the respiratory chain work at a fast rate, thus preventing
reactive intermediates from participating in collateral
reactions.

There are two mitochondrial uncoupling mechanisms: a)
Those that dissipate the pH gradient and b) Non-productive
redox reactions. Both mechanisms are widely spread in
nature. Physiological proton sinks are the uncoupling
proteins and the mitochondrial unspecific channels, while
non productive redox reactions are catalyzed by redox/non-
pumping alternative dehydrogenases and by orthodox
complexes that undergo slipping.

The relationship between the cytoplasmic and the
mitochondrial metabolic pathways needs to be better
understood. The ability of some products from glycolysis
to regulate oxidative phosphorylation is illustrative. The
comparison between Crabtree positive and Crabtree nega-
tive yeast species may help understand the mechanisms and
consequences of these interactions.

Understanding the mechanisms underlying the control
and production of ROS may help to select more resistant
organisms for biotechnological applications. Also, various
ROS-related diseases have to be understood in order to
design better treatments. In this light, it seems useful to
know that uncoupling prevents ROS production.

During evolution, each eukaryote species preserved one
or more ROS overproduction-prevention mechanism(s).
Yeast species are ideal to study each mechanism. Other
unicellular organisms may be helpful to understand their
ability to shut down aerobic metabolism without being
overwhelmed by ROS production.
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